Reiner, M., Niermann, C., Jekauc, D. & Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 13, 1–9 (2013).
Schroeder, E. C., Franke, W. D., Sharp, R. L. & Lee, D. C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One 14, e0210292 (2019).
Hargreaves, M. & Spriet, L. L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2, 817–828 (2020).
de Feo, P. et al. Metabolic response to exercise. J. Endocrinol. Invest. 26, 851–854 (2003).
Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).
Karstoft, K. & Pedersen, B. K. Exercise and type 2 diabetes: Focus on metabolism and inflammation. Immunol. Cell Biol. 94, 146–150 (2016).
Clauss, M., Gérard, P., Mosca, A. & Leclerc, M. Interplay between exercise and gut microbiome in the context of human health and performance. Front. Nutr. 8, 305 (2021).
Aya, V., Flórez, A., Perez, L. & Ramírez, J. D. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS ONE 16, e0247039 (2021).
Campaniello, D. et al. How diet and physical activity modulate gut microbiota: Evidence, and perspectives. Nutrients 14, 2456 (2022).
Lensu, S. & Pekkala, S. Gut microbiota, microbial metabolites and human physical performance. Metabolites 11, 716 (2021).
Koh, A. & Bäckhed, F. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Mol. Cell 78, 584–596 (2020).
Dohnalová, L. et al. A microbiome-dependent gut–brain pathway regulates motivation for exercise. Nature 612, 739–747 (2022).
Sakaguchi, C. A., Nieman, D. C., Signini, E. F., Abreu, R. M. & Catai, A. M. Metabolomics-based studies assessing exercise-induced alterations of the human metabolome: A systematic review. Metabolites 9, 164 (2019).
Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).
Kelly, R. S., Kelly, M. P. & Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1866, 165936 (2020).
Schranner, D., Kastenmüller, G., Schönfelder, M., Römisch-Margl, W. & Wackerhage, H. Metabolite concentration changes in humans after a bout of exercise: A systematic review of exercise metabolomics studies. Sports Med. Open 6, 1–17 (2020).
Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).
Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front. Microbiol. 9, 2323 (2018).
Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).
Driuchina, A. et al. Identification of gut microbial lysine and histidine degradation and CYP-dependent metabolites as biomarkers of fatty liver disease. mBio 14, e02663–22 (2023).
Hintikka, J. et al. Xylo-oligosaccharides in prevention of hepatic steatosis and adipose tissue inflammation: Associating taxonomic and metabolomic patterns in fecal microbiomes with biclustering. Int. J. Environ. Res. Public Health 18, 4049 (2021).
Mastrangelo, A. et al. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int. J. Obes. 40, 1494–1502 (2016).
Tan, S. T., Ramesh, T., Toh, X. R. & Nguyen, L. N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res. 80, 101068 (2020).
Han, M. S. et al. Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J. Lipid Res. 52, 1234–1246 (2011).
Huang, L. S., Hung, N. D., Sok, D. E. & Kim, M. R. Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids 45, 225–236 (2010).
Jenkins, B., West, J. A. & Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 20, 2425 (2015).
Qin, N., Li, L., Wang, Z. & Shi, S. Microbial production of odd-chain fatty acids. Biotechnol. Bioeng. 120, (2023).
Dalfó, E., Hernandez, M., Lizcano, J. M., Tipton, K. F. & Unzeta, M. Activation of human lung semicarbazide sensitive amine oxidase by a low molecular weight component present in human plasma. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1638, 278–286 (2003).
Salmi, M. & Jalkanen, S. Vascular adhesion protein-1: A cell surface amine oxidase in translation. Antioxid. Redox. Signal 30, 314–332 (2019).
Danielli, M., Thomas, R. C., Quinn, L. M. & Tan, B. K. Vascular adhesion protein-1 (VAP-1) in vascular inflammatory diseases. VASA 51, 341–350 (2022).
Sonnweber, T., Pizzini, A., Nairz, M., Weiss, G. & Tancevski, I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 19, 3285 (2018).
Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071 (2013).
Bae, M. et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 608, 168–173 (2022).
Luo, Y. et al. Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. NPJ Biofilms Microbiomes 8, 1–11 (2022).
Gao, X. et al. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct. 12, 1516–1528 (2021).
Tian, T. et al. Multi-omics data reveals the disturbance of glycerophospholipid metabolism caused by disordered gut microbiota in depressed mice. J. Adv. Res. 39, 135–145 (2022).
Xu, Y. et al. Function of Akkermansia muciniphila in obesity: Interactions with lipid metabolism, immune response and gut systems. Front. Microbiol. 11, 219 (2020).
Lehtovirta, M. et al. Association of physical activity with metabolic profile from adolescence to adulthood. Scand. J. Med. Sci. Sports 00, 11 (2022).
Kujala, U. M. et al. Long-term leisure-time physical activity and serum metabolome. Circulation 127, 340–348 (2013).
Bell, J. A. et al. Associations of device-measured physical activity across adolescence with metabolic traits: Prospective cohort study. PLoS Med. 15, (2018).
Jones, P. R. et al. Associations of physical activity and sedentary time with lipoprotein subclasses in Norwegian schoolchildren: The Active Smarter Kids (ASK) study. Atherosclerosis 288, 186–193 (2019).
Seidel, U., Huebbe, P. & Rimbach, G. Taurine: A regulator of cellular redox homeostasis and skeletal muscle function. Mol. Nutr. Food Res. 63, 1800569 (2019).
Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2017).
Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20, 461–472 (2019).
Staels, B. & Fonseca, V. A. Bile acids and metabolic regulation: Mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32, S237 (2009).
Miller, S. G., Hafen, P. S. & Brault, J. J. Increased adenine nucleotide degradation in skeletal muscle atrophy. Int. J. Mol. Sci. 21, 88 (2019).
Mikami, T. & Kitagawa, J. Intense exercise induces the degradation of adenine nucleotide and purine nucleotide synthesis via de novo pathway in the rat liver. Eur. J. Appl. Physiol. 96, 543–550 (2006).
Usva, K., Sinkko, T., Silvenius, F., Riipi, I. & Heusala, H. Carbon and water footprint of coffee consumed in Finland—life cycle assessment. Int. J. Life Cycle Assess. 25, 1976–1990 (2020).
Papandreou, C. et al. Plasma metabolites associated with coffee consumption: A metabolomic approach within the PREDIMED study. Nutrients 11, 1032 (2019).
Hakooz, N. Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Curr. Drug Metab. 10, 329–338 (2009).
Knudsen, J. G., Bertholdt, L., Gudiksen, A., Gerbal-Chaloin, S. & Rasmussen, M. K. Skeletal muscle interleukin-6 regulates hepatic cytochrome P450 expression: Effects of 16-week high-fat diet and exercise. Toxicol. Sci. 162, 309–317 (2018).
Ribeiro, J. A. & Sebastio, A. M. Caffeine and adenosine. J. Alzheimer’s Dis. 20, S3–S15 (2010).
Qian, X. B. et al. A guide to human microbiome research: Study design, sample collection, and bioinformatics analysis. Chin. Med. J. (Engl) 133, 1844–1855 (2020).
Barnett, A. G., van der Pols, J. C. & Dobson, A. J. Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 34, 215–220 (2005).
Lapatto, H. A. K. et al. Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci. Adv. 9, (2023).
Tsugawa, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).
Klåvus, A. et al. “Notame”: Workflow for non-targeted LC–MS metabolic profiling. Metabolites 10, 135 (2020).
Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 1–17 (2018).
Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).