• Reiner, M., Niermann, C., Jekauc, D. & Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 13, 1–9 (2013).

    Article 

    Google Scholar
     

  • Schroeder, E. C., Franke, W. D., Sharp, R. L. & Lee, D. C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS One 14, e0210292 (2019).

  • Hargreaves, M. & Spriet, L. L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2, 817–828 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Feo, P. et al. Metabolic response to exercise. J. Endocrinol. Invest. 26, 851–854 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Fiuza-Luces, C. et al. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 15, 731–743 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karstoft, K. & Pedersen, B. K. Exercise and type 2 diabetes: Focus on metabolism and inflammation. Immunol. Cell Biol. 94, 146–150 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clauss, M., Gérard, P., Mosca, A. & Leclerc, M. Interplay between exercise and gut microbiome in the context of human health and performance. Front. Nutr. 8, 305 (2021).

    Article 

    Google Scholar
     

  • Aya, V., Flórez, A., Perez, L. & Ramírez, J. D. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS ONE 16, e0247039 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campaniello, D. et al. How diet and physical activity modulate gut microbiota: Evidence, and perspectives. Nutrients 14, 2456 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lensu, S. & Pekkala, S. Gut microbiota, microbial metabolites and human physical performance. Metabolites 11, 716 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, A. & Bäckhed, F. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Mol. Cell 78, 584–596 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dohnalová, L. et al. A microbiome-dependent gut–brain pathway regulates motivation for exercise. Nature 612, 739–747 (2022).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Sakaguchi, C. A., Nieman, D. C., Signini, E. F., Abreu, R. M. & Catai, A. M. Metabolomics-based studies assessing exercise-induced alterations of the human metabolome: A systematic review. Metabolites 9, 164 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiehn, O. Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, R. S., Kelly, M. P. & Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1866, 165936 (2020).

  • Schranner, D., Kastenmüller, G., Schönfelder, M., Römisch-Margl, W. & Wackerhage, H. Metabolite concentration changes in humans after a bout of exercise: A systematic review of exercise metabolomics studies. Sports Med. Open 6, 1–17 (2020).

    Article 

    Google Scholar
     

  • Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front. Microbiol. 9, 2323 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driuchina, A. et al. Identification of gut microbial lysine and histidine degradation and CYP-dependent metabolites as biomarkers of fatty liver disease. mBio 14, e02663–22 (2023).

  • Hintikka, J. et al. Xylo-oligosaccharides in prevention of hepatic steatosis and adipose tissue inflammation: Associating taxonomic and metabolomic patterns in fecal microbiomes with biclustering. Int. J. Environ. Res. Public Health 18, 4049 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastrangelo, A. et al. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int. J. Obes. 40, 1494–1502 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Tan, S. T., Ramesh, T., Toh, X. R. & Nguyen, L. N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res. 80, 101068 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, M. S. et al. Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J. Lipid Res. 52, 1234–1246 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. S., Hung, N. D., Sok, D. E. & Kim, M. R. Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids 45, 225–236 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, B., West, J. A. & Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health and disease. Molecules 20, 2425 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, N., Li, L., Wang, Z. & Shi, S. Microbial production of odd-chain fatty acids. Biotechnol. Bioeng. 120, (2023).

  • Dalfó, E., Hernandez, M., Lizcano, J. M., Tipton, K. F. & Unzeta, M. Activation of human lung semicarbazide sensitive amine oxidase by a low molecular weight component present in human plasma. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1638, 278–286 (2003).

  • Salmi, M. & Jalkanen, S. Vascular adhesion protein-1: A cell surface amine oxidase in translation. Antioxid. Redox. Signal 30, 314–332 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Danielli, M., Thomas, R. C., Quinn, L. M. & Tan, B. K. Vascular adhesion protein-1 (VAP-1) in vascular inflammatory diseases. VASA 51, 341–350 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sonnweber, T., Pizzini, A., Nairz, M., Weiss, G. & Tancevski, I. Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 19, 3285 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bae, M. et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 608, 168–173 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Luo, Y. et al. Rational consideration of Akkermansia muciniphila targeting intestinal health: advantages and challenges. NPJ Biofilms Microbiomes 8, 1–11 (2022).

  • Gao, X. et al. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct. 12, 1516–1528 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, T. et al. Multi-omics data reveals the disturbance of glycerophospholipid metabolism caused by disordered gut microbiota in depressed mice. J. Adv. Res. 39, 135–145 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Function of Akkermansia muciniphila in obesity: Interactions with lipid metabolism, immune response and gut systems. Front. Microbiol. 11, 219 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehtovirta, M. et al. Association of physical activity with metabolic profile from adolescence to adulthood. Scand. J. Med. Sci. Sports 00, 11 (2022).


    Google Scholar
     

  • Kujala, U. M. et al. Long-term leisure-time physical activity and serum metabolome. Circulation 127, 340–348 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, J. A. et al. Associations of device-measured physical activity across adolescence with metabolic traits: Prospective cohort study. PLoS Med. 15, (2018).

  • Jones, P. R. et al. Associations of physical activity and sedentary time with lipoprotein subclasses in Norwegian schoolchildren: The Active Smarter Kids (ASK) study. Atherosclerosis 288, 186–193 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidel, U., Huebbe, P. & Rimbach, G. Taurine: A regulator of cellular redox homeostasis and skeletal muscle function. Mol. Nutr. Food Res. 63, 1800569 (2019).

    Article 

    Google Scholar
     

  • Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20, 461–472 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Staels, B. & Fonseca, V. A. Bile acids and metabolic regulation: Mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32, S237 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, S. G., Hafen, P. S. & Brault, J. J. Increased adenine nucleotide degradation in skeletal muscle atrophy. Int. J. Mol. Sci. 21, 88 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikami, T. & Kitagawa, J. Intense exercise induces the degradation of adenine nucleotide and purine nucleotide synthesis via de novo pathway in the rat liver. Eur. J. Appl. Physiol. 96, 543–550 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Usva, K., Sinkko, T., Silvenius, F., Riipi, I. & Heusala, H. Carbon and water footprint of coffee consumed in Finland—life cycle assessment. Int. J. Life Cycle Assess. 25, 1976–1990 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Papandreou, C. et al. Plasma metabolites associated with coffee consumption: A metabolomic approach within the PREDIMED study. Nutrients 11, 1032 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hakooz, N. Caffeine metabolic ratios for the in vivo evaluation of CYP1A2, N-acetyltransferase 2, xanthine oxidase and CYP2A6 enzymatic activities. Curr. Drug Metab. 10, 329–338 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knudsen, J. G., Bertholdt, L., Gudiksen, A., Gerbal-Chaloin, S. & Rasmussen, M. K. Skeletal muscle interleukin-6 regulates hepatic cytochrome P450 expression: Effects of 16-week high-fat diet and exercise. Toxicol. Sci. 162, 309–317 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribeiro, J. A. & Sebastio, A. M. Caffeine and adenosine. J. Alzheimer’s Dis. 20, S3–S15 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Qian, X. B. et al. A guide to human microbiome research: Study design, sample collection, and bioinformatics analysis. Chin. Med. J. (Engl) 133, 1844–1855 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Barnett, A. G., van der Pols, J. C. & Dobson, A. J. Regression to the mean: What it is and how to deal with it. Int. J. Epidemiol. 34, 215–220 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Lapatto, H. A. K. et al. Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci. Adv. 9, (2023).

  • Tsugawa, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klåvus, A. et al. “Notame”: Workflow for non-targeted LC–MS metabolic profiling. Metabolites 10, 135 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 1–17 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

  • Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • By admin